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High-resolution shock-capturing finite-volume numerical methods are applied to
investigate nonlinear geostrophic adjustment of rectilinear fronts and jets in
the rotating shallow-water model. Numerical experiments for various jet/front
configurations show that for localized initial conditions in the open domain an
adjusted state is always attained. This is the case even when the initial potential
vorticity (PV) is not positive-definite, the situation where no proof of existence of the
adjusted state is available. Adjustment of the vortex, PV-bearing, part of the flow is
rapid and is achieved within a couple of inertial periods. However, the PV-less low-
energy quasi-inertial oscillations remain for a long time in the vicinity of the jet core.
It is demonstrated that they represent a long-wave part of the initial perturbation and
decay according to the standard dispersion law ∼t−1/2. For geostrophic adjustment
in a periodic domain, an exact periodic nonlinear wave solution is found to emerge
spontaneously during the evolution of wave perturbations allowing us to conjecture
that this solution is an attractor. In both cases of adjustment in open and periodic
domains, it is shown that shock-formation is ubiquitous. It takes place immediately in
the jet core and, thus, plays an important role in fully nonlinear adjustment. Although
shocks dissipate energy effectively, the PV distribution is not changed owing to the
passage of shocks in the case of strictly rectilinear flows.

1. Introduction
The present paper is the second part of the detailed investigation of the geostrophic

adjustment phenomenon in the framework of the simplest possible model, the one-
and-a-half dimensional rotating shallow water (1dRSW). In the companion paper
(Zeitlin, Medvedev & Plougonven 2003, hereinafter referred to as Part 1), theoretical
analysis of the phenomenon was undertaken. Geostrophic adjustment is a process
of relaxation of an arbitrary initial configuration toward a state of geostrophic
equilibrium, i.e. the equilibrium between the pressure force and the Coriolis force, via
emission of inertia–gravity waves. In the 1dRSW, the geostrophic equilibria are steady
states. It is worth remembering, too, that 1dRSW was used in the pioneering paper
by Rossby (1938) in order to introduce the very notion of the geostrophic adjustment.

† Author to whom correspondence should be addressed: zeitlin@lmd.ens.fr



36 F. Bouchut, J. Le Sommer and V. Zeitlin

It was proved in Part 1 that a unique adjusted state exists for localized non-negative
initial potential vorticity (PV) distributions if the adjustment process takes place in
the open domain. It was shown that for initial configurations close enough to the
geostrophic equilibrium, the adjustment is always complete (i.e. trapped wave-modes
are absent), whenever the adjusted state exists. It was also shown that shock (hydraulic
jump) formation happens during inertia–gravity wave propagation if the gradients
of the initial height and velocity distributions are strong enough. We will sometimes
loosely call this process wave-breaking in what follows. (In fact, it is an idealized
model of wave-breaking which introduces dissipation in specified regions of the flow.)
Shock-formation was shown to be enhanced by anticyclonic shear. Finally, the exact
stationary-wave solutions were derived and analysed and were supposed to play an
important role in the adjustment process in the case of periodic geometry.

The aim of the present paper is to study the influence of strongly nonlinear
phenomena, especially wave-breaking, on the adjustment scenario of the jet-like
disturbances. The only way to attack the strong nonlinearities is by numerical
simulations and recent progress in finite-volume techniques for shallow-water flows
(Audusse et al. 2004a) allows us to do this with great precision and at low cost. Below,
we present the results of high-resolution shock-capturing simulations of 1dRSW
adjustment. We test the semi-quantitative predictions of Part 1 and address the
following problems which remain open in the case of the fully nonlinear geostrophic
adjustment, namely the problems of:

(i) existence of an adjusted state in the case when PV is not positive definite;
(ii) the role of the underlying shear on wave-breaking during adjustment of frontal

configurations;
(iii) the form of the relaxation law for finite-amplitude wave perturbations and its

dependence of the underlying jet/front configuration;
(iv) the role of the exact periodic nonlinear-wave solutions and their interaction

with shocks.
As a result, we obtain a comprehensive scenario of fully nonlinear adjustment in
1dRSW.

The plan of the paper is as follows. In § 2, we set the basic equations and briefly
present the numerical method. Section 3 is dedicated to the detailed numerical study
of the classical Rossby problem of adjustment of initial momentum imbalance in
the open domain. In § 4, we investigate in detail the shock-formation process and
test the semi-quantitative criteria for wave-breaking obtained in Part 1. Numerical
analysis of the relaxation of finite-amplitude wave-packets superimposed on fronts is
presented in § 5. In § 6, we consider adjustment in the periodic domain and the role
of the exact nonlinear wave solutions. A brief résumé of the results obtained in each
section is given at its end. We summarize the results in § 7. Numerical techniques and
their inter-comparisons are described in Appendix A, and details of the numerical
experiments presented in the main body of the paper are given in Appendix B.

2. Description of the model and the numerical procedure
Shallow-water equations on the rotating plane with no dependence on one of the

coordinates (y) are:

ut + uux − f v + ghx = 0,

vt + uvx + f u = 0,

ht + uhx + hux = 0.


 (2.1)
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Here, u, v are the two components of the horizontal velocity, h is the total fluid depth
(no topographic effects will be considered), f is the (constant) Coriolis parameter,
g is the acceleration due to gravity, and subscripts denote the corresponding partial
derivatives.

The model possesses the exact steady solutions corresponding to the geostrophic
equilibria:

f v = ghx, u = 0 . (2.2)

Linearization around the rest state h = H gives a zero-frequency mode and inertia–
gravity waves (IGW) with the standard dispersion law:

ω = ±
(
c2

0k
2 + f 2

)1/2
. (2.3)

Here, c0 =
√

gH , ω is the wave-frequency and k is the wavenumber. Note that the
minimal frequency of IGW is f , the inertial frequency, and that the group velocity
tends to zero for k → 0.

At least for continuous fields (h, u, v), each fluid particle conserves its PV:

qt + uqx = 0, (2.4)

the PV in this context being defined as

q =
f + vx

h
. (2.5)

For states in geostrophic equilibrium, which we simply call balanced in what follows,
the velocity field v and the PV q are completely determined by the distribution of the
height-field h. Note that IGW bear no PV-anomaly which is defined as q − f/H . The
absence of the PV-anomaly may be taken as the definition of the nonlinear wave-field
in contradistinction with the PV-bearing vortex field. An example of initial nonlinear
wave-field is an arbitrary distribution of u with zero v and zero h − H .

The model possesses an intrinsic length scale, the Rossby deformation radius
Rd =

√
gH/f . From given velocity and length scales U and L, respectively, the

characteristic non-dimensional parameters may be constructed. They are the Rossby
number Ro = U/f L and the Burgers number Bu = R2

d/L
2. It is easy to see that the

Rossby number controls nonlinearity in (2.1), the fully nonlinear case corresponding
to Ro ∼ 1, cf. Part 1.

The motivation of our study is the accurate description of the nonlinear effects and,
in particular, of the finite-time singularity (discontinuity) formation. It is therefore
worth reminding ourselves of the classical framework in which the weak solutions
involving discontinuities are defined.

2.1. Weak solutions of the 1dRSW equations

Equations (2.1) may be reformulated in the form of conservation laws for the two
components of momentum and the mass (although momentum is not conserved
because of the presence of the Coriolis acceleration in (2.1), we use the term
‘conservation laws’ for the equations below, as is frequently done in the literature (cf.
e.g. Rozhdestvensky & Yanenko 1983); it is also known as balance law):

(hu)t +
(
hu2 + 1

2
gh2

)
x

− f hv = 0,

(hv)t +(huv)x + f hu = 0,

ht + (hu)x = 0.


 (2.6)
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We will be solving a Cauchy problem for these equations with a series of initial
conditions prescribed in Appendix B and with either radiation or periodic boundary
conditions in x.

Note the analogy with the (rotating) compressible gas with a specific heat ratio
γ =2, h as a density variable, and the equivalent sound speed c0 =

√
gH . This analogy

allows us to use powerful computational methods developed in gas dynamics.
The basic properties required in order to define the weak solutions to (2.6) are

the conservation of mass and momentum across a supposed discontinuity (see e.g.
Lighthill 1978, p. 159). The weak solutions may also be obtained as solutions of a
dissipative set of equations corresponding to (2.6) in the limit of vanishing viscosity
(cf. e.g. Schar & Smith 1993). We use below the finite-volume numerical schemes with
Riemann solvers accounting for shock formation. These schemes are, by definition,
well adapted for capturing weak solutions and were extensively tested in (non-rotating)
gas dynamics. The only subtle point is the treatment of the source terms introduced
by the Coriolis force in (2.6).

2.2. Brief overview of the numerical schemes

Our choice of numerical procedure is motivated by the constant progress of the high-
resolution shock-capturing finite-volume computation methods for the free-surface
flows (cf. LeVeque 1992) and, for recent advances, Audusse et al. 2003. For solving the
Cauchy problem we use two numerical schemes, which are presented in detail in table 1
in Appendix A. The finite-volume approach has the following advantages. On the
one hand, convergence to the weak solutions is guaranteed for certain numerical flux
functions. Since the set of equations (2.6) is formally equivalent to the gas dynamics
equations, such numerical flux functions are known and have been extensively studied.
On the other hand, the boundary conditions are well posed and are easy to maintain
to the first and the second order in space. The slight inconvenience, in the context of
direct comparison with Part 1, is the use of Eulerian instead of Lagrangian variables.
The distinction between the slow vortical motion and rapid IGW is not automatic in
Eulerian coordinates because the IGW can modify the PV field in the physical space
via advection.

It should be emphasized that major improvements of the numerical codes were
recently achieved with respect to the schemes used in the previous numerical studies
of 1dRSW adjustment by Kuo & Polvani (1997, 1999). First, the methods we use below
have been designed with special care as to the computation of the source terms due
to the Coriolis forcing. An ad hoc discretization of these terms is made in Method 1
(cf. LeVeque 1998) whereas they are incorporated in the relaxation hyperbolic solver
in Method 2 (cf. Audusse et al. 2004a). The result of these improvements is that both
methods are less diffusive than the standard operator-splitting methods and they
can resolve the near-equilibrium states well since they conserve exactly the steady
states. Secondly, the hyperbolic solver of Method 2 intrinsically satisfies the entropy
condition; this is not guaranteed by the classical Roe solver. The practical effect of
this improvement is that it allows us to avoid over-diffusive corrections applied to
correct the Roe solver (cf. LeVeque 1992). Finally, this solver allows the computation
of the dry-bed, a situation which may occur when h → 0 (see below, and also Audusse,
Bristeau & Perthame 2004b for extended tests).

The basic properties of the numerical schemes are summarized in table 1 in
Appendix A, and a complete description of both methods is given there. For each
of the numerical experiments described below, we give the exact formulation of the
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Figure 1. The normalized profile NL(x) used in the numerical simulations, cf. Appendix B.

initial conditions, as well as all relevant parameters in Appendix B. The superscripts
a, b, . . . in the parameters correspond to experiments a, b, etc. respectively.

3. Rossby adjustment in the open domain
We start our study by adjustment of unbalanced jets, the classical Rossby problem

being the prototype.

3.1. The classical Rossby problem

Experiment a (cf. Appendix B) illustrates the evolution of a simple jet-shaped
initial momentum imbalance which consists in a localized v-velocity distribution
superimposed on the rest state.

The shape of the velocity profile of the jet v(x) is plotted in figure 1, the same
normalized profile

NL(x) =
(1 + tanh(4x/L + 2)) (1 − tanh(4x/L − 2))

(1 + tanh(2))2
(3.1)

is also used in other experiments. The dimensional parameters g, H, f are fixed once
for all simulations. Additional parameters V, L – the maximum zonal velocity and the
width of the jet – are defined for experiment a. The initial conditions and resulting
dynamics depend on two non-dimensional parameters: the Rossby number Roa and
the Burgers number Bua . As was already mentioned, the fully nonlinear adjustment
corresponds to Roa ∼ 1. A natural time scale is Tf = 2π/f .

The evolution of the height field h(x, t) is shown in figure 2 for Roa =1 and
Bua = 0.25. As expected, the height field adjusts to the momentum imbalance by
emitting IGW which propagate out from the jet. As seen in figure 2, two discontinuities
form very rapidly at the wavefront. The formation of shocks in RSW (i.e. the fact
that rotation does not inhibit wave-breaking) was previously predicted by Houghton
(1969) and observed by Kuo & Polvani (1997) in their numerical study of the rotating
dam-break problem. The semi-quantitative theory of shocks in 1dRSW was given
in Part 1. By analysing a variety of jet parameters, we plot the statistics of shocks
formation in figure 3. This figure shows that shock formation is ubiquitous for
large enough Rossby numbers. It should be stressed that breaking happens rapidly at
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Figure 2. Snapshots of the Rossby adjustment, experiment a. Two shocks are formed at
t = 0.3 and propagate to the left and to the right from the jet, respectively. One of the shocks
is formed immediately within the jet core. h, height; Ro =1; Bu = 0.25.
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Figure 3. Statistics of the shock formation in the Rossby adjustment problem on the
Bua − Roa plane: each point corresponds to a run with the corresponding parameters Bua

and Roa . �, breaking happens in t < π/f ; �, breaking event in π/f < t < 2π/f ; +, breaking in
t > 2π/f . Appearance of transonic shocks, i.e. those with propagation velocity changing sign
during evolution, are marked by the superscript t . �, drying was observed for large Roa and
small Bua .

t ∼ π/f , and immediately within the jet core. Hence, the breaking phenomenon can, in
principle, modify the background flow as it necessarily involves dissipative processes.
The effect of breaking upon the background flow is studied in detail in § 4. It should
be noted that shock-formation in the present case of strong initial imbalance first
happens at the anticyclonic side of the jet in accord with the qualitative criteria of
Part 1.

The vortical PV-bearing part of the flow reached an equilibrium state for all
parameter values we studied. This equilibrium state is basically geostrophic, as
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illustrated in figure 4. The adjustment of the vortical flow is rapid, it happens in
several inertial periods.

The equilibrium is achieved even if the initial potential vorticity is not positive-
definite. This is illustrated in figure 5 and was not predicted by the analytical study
in Part 1. Furthermore, a considerable advective shift of the potential vorticity takes
place on route to the geostrophic state. This finite-amplitude effect is a recoil due
to the IGW emission. Finally, as was first noticed by Kuo & Polvani (1997) in their
numerical simulations, some (PV-less) oscillations with frequencies close to f remain
for a long time in the vicinity of the jet (cf. figures 4 and 13). The precise nature of
these oscillations will be determined in § 5.

3.2. The double-jet configuration

In order to extend the investigation beyond the single-jet geometry of the momentum
imbalance, especially concerning the existence of the adjusted state for negative initial
PVs, we repeated the experiment for the case of initial double-jet configuration
(experiment b, cf. Appendix C). The definition of the initial state now requires three
independent parameters: the Rossby number Rob, the Burgers number Bub and an
additional parameter which fixes the distance between the maxima of the jets, αb.
There exist two different classes of initial states depending on the sign of αb, as
illustrated in figure 6. In both cases, the flow evolution goes through the same stages
as in the single-jet case, as to the shock formation and the geostrophic equilibrium
in the final state. The initial versus final PV-fields are plotted in figure 7. Note that
in the case αb = −1 (positive mass anomaly of the end-state) the PV distribution
shrinks, whereas in the case αb = 1 (negative mass anomaly of the end-state) the
PV distribution stretches. Note also that the amplitude of the advective shift is now
smaller than in the previous case.

3.3. Summary of the Rossby adjustment results

(i) Adjusted state is reached even for non positive-definite PVs after a rapid stage
of IGW emission;

(ii) for a wide range of parameters, IGW break within or close to the jet core;
(iii) quasi-inertial oscillations remain in the jet region for long times.
Below we will study in more detail the wave-breaking phenomenon and the

properties of the observed quasi-inertial oscillations.

4. Shock formation
In this section we study shock formation and test the qualitative criteria for wave

breaking found in Part 1. Before proceeding, we briefly recall the classical hydraulic
theory in order to explain why, although energy is dissipated in shocks, this dissipation
does not affect the PV-conservation.

4.1. Reminder of the hydraulic theory

The analogy between the shallow-water equations and the compressible Euler
equations is well known. It gives a mathematically rigorous framework to describe
the hydraulic jumps as gas dynamics shock waves (see Lighthill 1978). The standard
discontinuity calculus holds for 1dRSW, as well. (For non-rotating case see Whitham
1974; for rotating case see Pratt 1983, 1984 and Nof 1984). Weak solutions are
known to be completely determined if the Rankine–Hugoniot (RH) conditions
are specified together with the entropy condition. In our case,the RH conditions
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Figure 4. Check of balance between f v and ghx in the Rossby adjustment, experiment
a: although a state close to the geostrophic balance mean state (b) is rapidly achieved,
oscillations persist in the jet core. The amplitude of oscillations is decreasing with time and
depends on the parameters Roa and Bua . The period of oscillations is close to Tf . The scale

of the graphs is c2
0/L. (a) t/Tf = 22.0; (b) 22.2; (c) 22.5.
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Figure 5. PV-shift during the Rossby adjustment process, experiment a. The initial
distribution of PV and the mean distribution at t = 34.2Tf are shown. Ro = 1; Bu =0.25.
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Figure 6. Two possible configurations of the double-jet adjustment – experiment b.
Initial v(x, 0) with (a) α = −1, (b) α = 1.

are:

−U[hu] + [hu2 + gh2/2] = 0, (4.1a)

−U[hv] + [huv] = 0, (4.1b)

−U[h] + [hu] = 0, (4.1c)

where U is the speed of the discontinuity and [A] is the jump, following a fluid particle,
of any quantity A across the discontinuity. These conditions do not depend on the
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Figure 7. PV-shift in the double-jet adjustment: experiment b with Bub = 1 and Rob = 1.
PV advection, (a) α = −1, (b) α = 1.

Coriolis parameter f and express, respectively, the conservation of momentum in the
x- and y-directions and mass conservation across the discontinuity. Yet, physically
relevant solutions are not specified unless the dissipation of the total energy E across
the discontinuity is ensured (cf. Whitham 1974):

−U[E] + [(E + gh2/2)u] � 0 with E = 1
2
h(gh + u2 + v2), (4.2)

which is an analogue of the gas dynamics entropy condition. As a direct consequence,
this implies that [h] > 0 across a shock. Note that conditions (4.1) are satisfied by
any finite-volume numerical scheme, whereas the fulfilment of condition (4.2), which
is not straightforward, requires special care. From the RH and entropy conditions, it
follows that the rate of the energy dissipation in every material volume V (t) which
contains a discontinuity depends on the amplitude of the jump only

d

dt

∫
V (t)

Edx = 1
4
g [h]2 [u] . (4.3)

We present in figure 8 the shock-induced energy decay in the Rossby adjustment
experiment a. Note that up to 10% of the available energy is dissipated by the shock
under certain circumstances. In spite of this figures 5 and 7 suggest that the PV field
is not affected by dissipation due to the passage of shocks. Kuo & Polvani (1997)
observed this feature in their simulations and inferred that it was due to the decrease
in the shock strength induced by rotation.

Following Pratt (1983, 1984) and Peregrine (1998), in the absence of contact dis-
continuities, i.e. for [v] = 0, we consider the jump in PV equation −U [hq] + [huq] = 0
and continuity equation [(U − u)h] = 0 to obtain (U − u)h[q] = 0. Hence [q] = 0 in
one dimension. Only transverse variation in shock strength can affect the PV in this
framework (cf. Pratt 1983). Hence, in the y-independent reduction of the shallow-
water equations, no PV deposit by shocks is possible.
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Figure 8. Shock-induced energy decay in the Rossby adjustment simulations: experiment a.
The evolution of the non-dimensional energy anomaly ∆= (e − ep(0))/ep(0) with ep(t) =

∫
dx g

(h − H )2/2 and e(t) = ep(t) +
∫

dx h(u2 + v2)/2 computed in the volume [−5L, 5L]. Note the
good numerical conservation of energy at early stages (giving a criterion for detecting the
shock formation). As Roa increases, shocks appear earlier and the amount of dissipated energy
increases.

As shown by Houghton (1969), shocks are modified by rotation. This implies a
decrease in shock strength with time, but, as shown above, shocks do not affect the
vortical part of the flow.

We can now investigate which conditions favour the shock formation on the basis
of the semi-quantitative criteria for wave-breaking found in Part 1.

4.2. Cyclone/anticyclone asymmetry in the adjustment of the wave perturbation
of a single jet

The first numerical experiment (experiment c, cf. Appendix B) along these lines
is that of adjustment of a PV-less wave perturbation superimposed onto a simple
balanced jet. The aim of experiment c is to check how the vorticity in the jet region
influences shock formation. The details of the initialization are given in Appendix
B. The parameters are the Rossby and the Burgers numbers associated with the jet,
Roc

jet, Buc
jet and the Rossby and the Froude numbers which specify the perturbation,

Roc
p, F rc

p , cf. Appendix B. The typical evolution of the perturbation is shown in
figure 9. The perturbation splits into a left and a right propagating part, but, in this
case, only the former breaks inside the jet. Let us recall that, as shown in Part 1,
two factors lead to breaking: strong enough gradients of the Riemann invariants and
strong enough anticyclonic shear. The perturbation is small enough in figure 9, and
the derivatives R± of the Riemann invariants rewritten in Eulerian variables (these
expressions are obtained by a change of variables from corresponding expressions in
Lagrangian coordinates calculated in Part 1),

R± = 8

(
H

h

)1/4

ux ±
√

g

H

(
h

H

)3/4

hx, (4.4)

are dominated by the derivative ofthe height field (the second term). Since the sign
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Figure 9. Wave breaking in a simple jet: experiment c with Roc
jet=1, Buc

jet=1 and Roc
p=0.8.

Left-hand column: h, u in the case up > 0. Right-hand column: h, u in the case up < 0. In both
cases, the fields are plotted for successive times 0, 0.1, 0.2, 0.3 Tf ( from top to bottom ). The
arrows indicate shock locations. The vertical scale is given for the lowermost curves, it is the
same for other curves.

of this term is fixed by the geostrophic balance of the basic state, the part of
the perturbation propagating toward the small h region is more likely to break.
Hence, breaking happens at the cyclonic part of the balanced jet as the influence of
anticyclonicity is overcome by the strength of pressure gradients in this case.

4.3. The influence of background vorticity

In order to find how the region of negative relative vorticity could force the wave-
breaking we carry out the experiment d , cf. Appendix B. The initial conditions
correspond to a balanced double-jet with a superimposed wave perturbation. We fix
the following parameters: Rod

jet, Bud
jet, Rod

p, F rd
p and let αd take three different values

so that we can test the influence of vorticity on the wave-breaking. The three cases
are represented in figure 10. In each case, the wave-perturbation scale is chosen so
that the perturbation is located in the constant h region, h = H . More precisely, in all
cases, the quantity R± is the same initially. Finally, the perturbation is small enough
to consider that the Eulerian and Lagrangian coordinates coincide. The evolution of
the wave-field in the test case αd = 0 where the background flow is constant is shown
in figure 11. The perturbation splits into two, propagating in the opposite sense
parts. Each evolves independently and breaks before t = Tf /2. Note that we need
not consider the symmetric case with positive initial up because the system (2.6) is
invariant under the change of variables u → −u, x → −x. Now let us consider two other
cases: for αd > 0 (αd < 0), the perturbation propagates first through a region of positive
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Figure 11. Time evolution of the height field in the wave adjustment: experiment d with
αd = 0, Rod

p = −0.15, F rd
p = −0.15 and no background jet. h is plotted for successive times:

0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 Tf (from top to bottom). The arrows indicate shock locations. The
vertical scale is given for the lowermost curves, it is the same for other curves.

(negative) vorticity. The analysis of Part 1 suggests that breaking would be favoured
in the second case αd < 0, and this is indeed what happens: figure 12 is a snapshot of
the field at t = 0.35Tf when the perturbation has propagated through the region I . As
we can see, the gradients become steeper as αd decreases. This is observed for the field
u, but also for the field hu, so this effect is not due to the mass variation. Although
this simulation indicates that the negative vorticity region favours breaking, there is
no clear-cut separation between the effect of vorticity and that of large gradients,
because the geostrophic balance implies a relation between hxx and vx . Therefore, R±
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Figure 12. Influence of the background vorticity on the wave breaking – experiment d with
Rod

jet = 0.5, Rod
p = −0.15, F rd

p = −0.15: (a) u is plotted at time t = 0.35Tf for the three cases:
αd = 0, αd = 5, αd = −5. At t = 0.35Tf , the perturbation has passed through a region of vorticity
whose sign depends on the sign of αd . The gradients are becoming steeper as αd decreases.
(b) The same result holds for hu. It is found that if Λ is the maximum amplitude of hu for
α = 0, then for αd = 5 the amplitude is 1.04Λ and for αd = −5 it is 0.96Λ.

varies due to vx , but also because of the variation hx . Note that the main effect is
a delay induced by the variation of h: the wavefront is becoming more rapid as h

diminishes, which explains the shift between the plots in figure 12 . The final remark
is that [h] decreases as the perturbation is going through a region of negative vorticity
and increases in positive vorticity regions. This suggests that although breaking itself
is only slightly influenced by cyclonicity, the dissipation is substantially enhanced in
such regions.

4.4. Summary of the shock-formation simulations

(i) Shock formation events are ubiquitous;
(ii) shocks induce energy loss which can affect up to 10% of the available energy;



Frontal geostrophic adjustment in rotating shallow water. Part 2 49

0.10

0.05

0

–0.05
13 14 15 16 17 18

u(0, t)

t/Tf

500 pts
1000
5000

Figure 13. Grid refinement impact on long-time computation: experiment d with Rod = 0.25,
Bud = 1, Rod

p = −0.5 and Frd
p = −0.5. Both amplitude and frequency obtained vary until

sufficient numerical resolution is achieved (solid line). The number of grid-points is being incre-
ased within the fixed spatial domain [−40Rd, + 40Rd ] giving the corresponding spatial
resolutions �x = 0.16Rd, 0.08Rd, 0.016Rd , respectively.

(iii) PV is not modified by the dissipation due to shocks;
(iv) in a simple balanced jet, breaking is more likely to occur at the cyclonic side.

5. Adjustment and quasi-inertial oscillations
One of the most important questions about the geostrophic adjustment is whether

it is complete. It was shown in Part 1 that no trapped modes are possible within the
localized jets/fronts in the model (2.1), but that for certain configurations the non-
monotonicity of the ‘potential’ in the effective Schrödinger-like equation governing
the dynamics of small perturbations over a balanced state may delay the dispersion
of the initial perturbation (so-called quasi-stationary states (QSS) may exist). Both
results were based on the smallness of the wave-perturbations over the balanced
jet/front, so the question of completeness of adjustment in the case of a fully
nonlinear perturbation was not definitely answered. The quasi-inertial oscillations
were observed in experiments a and b, and earlier in the simulations of Kuo &
Polvani (1997). In order to understand the nature of these oscillations, we performed
long-time simulations and undertook special efforts to determine the form of the
relaxation law. Let us recall that the standard dispersion means a t−1/2 law and that
we could expect (cf. Part 1) exponential corrections due to quasi-stationary states, if
any. The non-decay of the oscillations amplitude would mean wave-trapping.

In order to keep the number of parameters reasonable, we consider here an initial
imbalance with the same characteristic scale L as the jet itself and use the same
perturbation as in experiment d .

5.1. Technical limitations on long-time computation

Before proceeding, it is worth making a brief comment on numerics. It is clear
that long-time numerical simulations must be done with great care because of the
accumulation of numerical errors. In order to illustrate the effect of spatial resolution
on the long-time behaviour of the solution, we plotted in figure 13 the field u at point
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x = 0 versus time for the same experiment with increasing spatial resolution. For
example, from a rough-resolution simulation, we might deduce that the decay law is
exponential, whereas with a finer grid the law t−1/2 is obtained. (Increasing resolution
further beyond the highest one displayed does not change either amplitude or phase
of the oscillations – see Appendix B for numerical convergence tests.) Hence, any
result on the amplitude of the oscillations has to be checked on a refined computation
grid, which we have been doing systematically. Another way to improve the behaviour
of the scheme for long-time computations is to use an o(�t)2 time-stepping scheme
instead of the o(�t) classical Euler scheme. In our simulations, this was done for
Method 2 (cf. Appendix A.4).

5.2. Dispersion of the wave packets superimposed on the jet

As was shown in Part 1, the spatial structure of small-amplitude disturbances over a
balanced state is governed by the Shrödinger-like equation:

d2ψ

da2
+ k2

ψ (a)ψ = 0, (5.1)

where a is the mass Lagrangian variable, and ψ is the amplitude of the wave field.
The possibility of having a modified dispersion of a (small) perturbation depends on
the presence of a potential well (and, hence, of related QSS) in pseudo-potential k2

ψ .
We rewrite the pseudo-potential in Eulerian variables as:

k2
ψ =

H 3

h3

(
ω2 − f 2

gH
− 3

2

∂2

∂x2

h

H
+

3

4

H

h

(
∂

∂x

h

H

)2
)

. (5.2)

In what follows, the same initial wave-perturbation is used in three different cases
and superimposed onto different background-adjusted states corresponding to the
following situations labelled with the help of parameter α in the framework of
experiment d:

(i) α = 0, a uniform PV state;
(ii) α = 1, a negative mass anomaly;
(iii) α = −1, a positive mass anomaly.

The pseudo-potential k2
ψ is plotted for the last two cases in figure 14. If α = 0, it

is uniform: k2
ψ =(ω2 − f 2)/c2 and no QSS is possible. If α �= 0, QSS are expected

at frequency ω if the potential k2
ψ is positive in a localized region and negative

elsewhere. The relaxation laws of the same initial perturbation as in experiment d are
presented in figure 15. They are obtained as follows. For each case α = 0, 1, −1 we
sampled the momentum density hu(0, t) with 5000 points. We then computed A(ω, t),
the windowed discrete-time Fourier transform of this signal, using a sliding Hann
window of 256 points with an overlapping of 128 points, and plotted A(f, t).

All three curves exhibit a dispersive ∝ λ/
√

t decay with λ depending on the vortical
part of the flow. Therefore, the tentative correction to the standard dispersion law
due to QSS is negligible for the initial configuration of a flow with comparable
characteristic scales of balanced and imbalanced parts which we use. Hence, the
nature of quasi-inertial oscillations detected in previous simulations becomes clear:
they are simply the extra-long IGW having almost zero group velocity and, thus, are
almost non-propagative.

5.3. Summary of the results on decay of quasi-inertial oscillations

(i) In all cases studied, the relaxation of the initial wave-packet follows the t−1/2

law and is not sensitive to the complex structure of the underlying vortex flow;
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Figure 14. Potential k2
ψ – experiment d with Rod = 0.25 and Bud = 1. For each case k2

ψ (ω)
is plotted for ω = f (solid), ω = 1.2f (dashed) and ω = 1.4f (dash-dotted). QSS are expected
at frequency ω if k2

ψ (ω) > 0 in a bounded domain surrounded by a region where k2
ψ (ω) < 0, i.e.

in the case ω = f , α = −1, which corresponds to a positive mass anomaly. (a) α = −1, (b) α = 1.
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Figure 15. Relaxation laws for a double-jet configuration in three cases – experiment d with
Rod = 0.25, Bud = 1, Rod

p = −0.5 and Frd
p = − 0.5. The plotted quantity is 1/A2, where A is the

time-dependent amplitude of the Fourier harmonics with ω = f . In all cases, the relaxation
law is λ/

√
t with λ= 19.43 for uniform rest flow (α = 0); λ= 16.15 for negative mass anomaly

(α = 1); λ= 22.74 for positive mass anomaly (α = −1).

(ii) the characteristic time-scale of decay is determined by the vortex part of the
flow.

6. Adjustment and exact nonlinear wave solutions in the periodic domain
In this section, we study the geostrophic adjustment in the periodic domain, and

focus on the interaction between shocks and exact periodic nonlinear wave solutions



52 F. Bouchut, J. Le Sommer and V. Zeitlin

2.0

1.5

1.0

0.5

1.0

0.5

0

–0.5

0.5

0

–0.5

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

x/Rd

h

u

v

Figure 16. Exact nonlinear-wave solution used in experiment e; the limiting-amplitude
configuration with the phase-speed c = 2c0 (cf. Part 1) is chosen.

known to exist in 1dRSW. These solutions, found by Shrira 1981, 1986 (the idea
appeared first in Ostrovsky 1978) and described later from the Lagrangian viewpoint
in Part 1, are steady propagating finite-amplitude periodic waves. It is worth recalling
that their amplitudes are limited from above by some limiting profile, whereas in
the limit of vanishing amplitudes the ordinary linear IGW are recovered (cf. Part 1).
Although these solutions were discovered a long time ago, little is known on their
stability. The interaction of these nonlinear waves with shocks is another open
question. Recall that, at finite amplitudes, these waves are ‘supersonic’ (cf. Part 1).
So we start our study by investigating stability of the nonlinear periodic wave
solutions. We limit ourselves in this section by constant-PV, i.e. purely wave (although
fully nonlinear) configurations, as is the case for the exact nonlinear periodic waves
themselves.

6.1. Stability of the nonlinear periodic waves

In figure 16, we plotted an exact nonlinear wave solution of limiting amplitude with
the phase speed c = 2c0 in physical space. This solution is used to initialize the
Cauchy problem with a perturbation superimposed on it (experiment e). The fact
that our numerical scheme maintains this solution for a long time in the absence of
the perturbation was one of the principal tests of the code. We then look at what time
we can observe a significant discrepancy between the exact and perturbed solutions.
This experiment, of course, is not an exhaustive study of stability, but rather a first
check of the robustness of the solution.

The evolution of the height field of the nonlinear wave with a localized perturbation
applied at the initial moment is presented in figure 17 and shows that nonlinear waves
are indeed robust.



Frontal geostrophic adjustment in rotating shallow water. Part 2 53

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8
0 2 4 6 8 10 0 2 4 6 8 10

h

x/Rd x/Rd

(a) (b)

Figure 17. Stability of the nonlinear wave solution of limiting amplitude, experiment e:
(a) localized perturbation is added to the nonlinear wave solution; (b) the resulting profile
after ten inertial periods. Between these two snapshots, the wave propagates at speed c =2c0

so that 12 recurrences in the computation domain were observed.
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Figure 18. Time evolution of a finite-amplitude harmonic wave, experiment f .
Ro = 0.1, k = π/2.

6.2. Evolution of a finite-amplitude harmonic wave and emergence of nonlinear
periodic waves

In figure 18, we show that nonlinear periodic waves emerge spontaneously during
the evolution of a finite-amplitude harmonic wave.An exact harmonic solution to the
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Figure 19. Energy decay during the evolution of a high-amplitude harmonic wave, experiment
f . We show the evolution of the non-dimensional total energy e/e(0), of the non-dimensional
available kinetic energy ep/e(0) and of the non-dimensional kinetic energy ec/e(0), with
ep(t) =

∫
dx g(h − H )2/2, ec(t) =

∫
dx h(u2 + v2)/2 and e = ep + ec computed in the whole

periodic domain. Ro = 0.1, k = π/2.

linearized equations (2.1) with Roe = 0.1 and k = π/2 is taken as the initial condition
in experiment f . As seen from figure 18, the initial wave breaks down and, after a
stage of geostrophic adjustment, a quasi-steady propagative state is reached which
resembles closely the cusp pattern of the exact propagative nonlinear solution. The
adjustment is achieved through shock formation and related energy dissipation. The
energy decay due to dissipative processes in the shock is displayed in figure 19 and
shows that in this case the energy tends to a nearly steady value after a rapid stage
of adjustment.

6.3. Summary of the periodic domain study

We thus find indications that nonlinear periodic waves of limiting amplitude are
nonlinearly stable. They arise naturally during nonlinear adjustment in the periodic
domain and are, probably, attractors. The proof of this hypothesis requires further
work.

7. Summary and discussion
Thus, from our high-resolution shock-capturing numerical simulations we derive the

following general properties of the fully nonlinear geostrophic adjustment in 1dRSW:
(i) For localized initial data in the open domain, the adjusted state is reached

even for non-positive-definite initial PV distributions;
(ii) The geostrophic adjustment is always complete; it is a rapid process: the final

distribution of PV is achieved within several inertial periods. However, owing to
their feeble group velocity the quasi-inertial oscillations, although being dispersed
according to the standard dispersion law ∼ 1/

√
t , stay in the vicinity of the initial

perturbation for a long time;
(iii) Shock formation within or in the immediate vicinity of the jet core is ubiquitous.

Together with outgoing IGW, shocks provide an effective means (the only one in the
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Method 1 Method 2

Solver Roe approximate Riemann solver Relaxation scheme
Source terms Quasi-steady wave-propagation method Non-split method
Conservative Yes Yes
Positiveness of h Not guaranteed Guaranteed
Steady solutions Preserved Preserved
O(�x)n n = 2 n = 2
O(�t)n n = 1 n = 2

Table 1. Numerical schemes and their basic properties.

periodic geometry) for the flow to evacuate the excess energy and to arrive to an
energy-minimum balanced state;

(iv) Adjustment in the periodic domain gives rise to spontaneous emergence of
exact nonlinear periodic waves of limiting amplitude after the excess energy is
dissipated via shocks. Nonlinear wave solutions are found to be robust.

The scenario of geostrophic adjustment obtained above is, obviously, subject to
the limitations due to the choice of the model. However, we focused on nonlinearity-
dominated adjustment and RSW is a good conceptual model for this purpose. Of
course, the physical wave-breaking processes are not resolved in the model, but
parameterized by the shock (hydraulic jump) formation. Needless to say, shocks are
formally beyond the limits of applicability of the hydrostatic shallow-water approxim-
ation which is derived under the hypothesis of horizontal scales of motion being much
larger than the fluid depth. Nevertheless, the parameterization of localized dissipation
regions produced by wave-breaking in terms of shocks is widely used (cf. e.g.
Whitham 1974). It is mathematically consistent and allows high-resolution numerical
simulations, as illustrated above. Going beyond the hydrostatic shallow-water approxi-
mation (which would add physical realism, but reduce mathematical tractability) is
out of the scope of the present paper. Let us only mention that work is in progress
on the nonlinear adjustment in two- and three-layer RSW and will be reported
elsewhere.

The work of J. L. S. and V. Z. was supported by the French National Program
PATOM and ACI PCN. We are grateful to anonymous referees for their constructive
remarks on the original version of the paper.

Appendix A. Numerical methods
We used two different finite-volume methods to investigate the time-evolution of

initial imbalanced states in 1dRSW. We briefly present below the basic procedures.
Higher-order corrections are computed in both cases so that second-order spatial
accuracy is obtained for each method. However, we will not describe these corrections
explicitly in this Appendix. Euler time-stepping is used for both cases, except for
long-time computations where second-order time accuracy is needed. A summary of
the main features and properties of each method is given in table 1.

A.1. Method 1

The wave-propagation method

The basic numerical procedure which is used to capture discontinuous solution
to one-dimensional systems of conservation laws is the Godunov method as
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implemented in the CLAWPACK package. Details are given in LeVeque (1992) or in
the CLAWPACK documentation, 2002 (Version 4.1, available at http://www.amath.
washington.edu/claw/). A conservative system,

Ut + f (U )x = 0, (A 1)

with U ∈ Rn, is discretized, following a finite-volume method, on a uniform grid
with �x = xj+1 − xj . We consider piecewise-constant states in each mesh cell, with
discontinuities at each interface. This defines a series of local Riemann problems
consisting of the breakup of a single interface discontinuity. The following first-order
conservative numerical scheme in the j th cell for tn = n�t results:

Un+1
j = Un

j − �t

�x

(
F

(
Un

j , Un
j+1

)
− F

(
Un

j−1, U
n
j

))
, (A 2)

where F is the numerical flux function which is evaluated from the exact or
approximate solution of the Riemann problem. This solution is composed of three
waves (two sonic disturbances and a contact surface) separating three states. The
integration of these waves over a mesh cell gives the numerical flux. The part of
the code designed to calculate the numerical flux is the Riemann solver. Note that
since we apply the Godunov method to the conservative system (2.6), the numerical
integration will give an approximate solution of the Cauchy problem which conserves
mass and momentum.

Within the CLAWPACK implementation, the Godunov method is written in a form
that requires no explicit computation of the waves. Instead, it uses a flux difference
splitting (see LeVeque 1997 for details), which is a decomposition of f (Uj+1) − f (Uj )
into a left-going flux difference (say �−

j+1/2) and a right-going flux difference (say

�+
j+1/2) with the property that:

�−
j+1/2 + �+

j+1/2 = f (Uj+1) − f (Uj ), (A 3)

so the scheme is finally written:

Un+1
j = Un

j − �t

�x

(
�+

j−1/2 + �−
j+1/2

)
. (A 4)

We can obtain higher-order schemes by applying flux-limiting correction (cf. LeVeque
1992); the present study is carried out with a second-order accuracy. The 1dRSW is
solved with the Roe solver; this linearized Riemann solver calculates an approximate
solution to the exact nonlinear Riemann problem that consists of pure discontinuities.
Since the linear local equations cannot capture the rarefaction waves, an ‘entropy fix’
is to be applied, consisting in the addition of a small amount of dissipation which
prevents formation of shocks violating the entropy condition. This typically happens
when the true Riemann solution contains a transonic rarefaction wave.

Source-terms description

We present here the numerical procedure we used to handle the Coriolis source
terms in the 1dRSW, (2.6). This method is documented in LeVeque (1998) or in
CLAWPACK. It was originally developed to compute a topographic forcing in the
shallow-water equations within the framework of the Godunov method.

The 1dRSW is an inhomogeneous system of conservation laws, that can be written
as

Ut + f (U )x = ψ(U ). (A 5)
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where f is a flux function and ψ the source term coming from the Coriolis force.
Geostrophically adjusted states correspond to situations in which the flux gradient is
balanced by the source term.

The key idea of the quasi-steady wave-propagation method is to introduce a
Riemann problem at the centre of each grid cell whose flux difference exactly cancels
the Coriolis source term. This leads to modified Riemann problems at cell edges in
which the jump now corresponds to deviations from the steady state. At t = n�t , the
jump in the j th cell has a magnitude |U+

j − U−
j | where the quantities U+

j and U−
j are

defined in the left and the right half of that cell, respectively. The jump should satisfy
the following conditions:

1
2
(U−

j + U+
j ) = Uj,

f (U+
j ) − f (U−

j ) = �x ψ(Uj ).

}
(A 6)

Then, if the time step �t is small enough, the scheme will preserve steady states
(LeVeque 1998). The first condition ensures that the method remains conservative
by leaving the cell average unchanged; the second says that the waves emanating
from the cell-centred Riemann problem exactly cancel the influence of the source. As
noticed by LeVeque (1998), this treatment of the source fails if the solution contains
a transonic shock, namely with propagation velocity changing sign during evolution.

A.2. Method 2

This method for solving (2.6) has two ingredients: a method for solving the shallow-
water system with topography, and a procedure to interpret the rotation term as an
apparent topography.

Well-balanced schemes for shallow-water with topography

Before considering the 1dRSW system, let us introduce the shallow-water system
with topography that was much studied in relation with numerical schemes:

ht + (hu)x = 0,

(hu)t + (hu2 + gh2/2)x + hZx = 0.

}
(A 7)

Here, Z(x)/g represents topography. In this system, the steady states given by u = 0,
gh+Z = const , play a crucial role. In the past few years, a large amount of work has
been done on the problem of finding well-balanced schemes for (A 7), which means
that they need to preserve steady states at the discrete level. According to Bouchut
(2004), such schemes can be written as

Un+1
i − Un

i +
�t

�x

(
Fi+1/2− − Fi−1/2+

)
= 0, (A 8)

where Un
i is an approximation of U = (h, hu), and the left/right numerical fluxes are

computed as

Fi+1/2− = Fl

(
Ui, Ui+1, �Zi+1/2

)
, Fi+1/2+ = Fr

(
Ui, Ui+1, �Zi+1/2

)
, (A 9)

with �Zi+1/2 = Zi+1 −Zi . The numerical fluxes Fl and Fr must satisfy two consistency
properties. The first is the consistency with the conservative term,

Fl(U, U, 0) = Fr (U, U, 0) = F (U ) ≡ (hu, hu2 + gh2/2), (A 10)

and the second is the consistency with the source,

Fr (Ul, Ur, �Z) − Fl(Ul, Ur, �Z) = (0, −h�Z) + o(�Z), (A 11)
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as Ul , Ur → U and �Z → 0. An overall property that we require is the conservation
of mass,

F h
l (Ul, Ur, �Z) = F h

r (Ul, Ur, �Z) ≡ F h(Ul, Ur, �Z). (A 12)

The property for the scheme to be well-balanced is that

Fi+1/2− = F (Ui), Fi+1/2+ = F (Ui+1),

whenever ui = ui+1 = 0, ghi+1 − ghi + �Zi+1/2 = 0.

}
(A 13)

A consistent well-balanced scheme that is very cheap, that is able to treat transonic
flows and dry states h = 0, and that satisfies a discrete entropy inequality, has been
proposed recently by Audusse et al. 2003. It has the following form,

Fl(Ul, Ur, �Z) = F(U ∗
l , U ∗

r ) +

(
0

gh2
l /2 − gh2

l∗/2

)
,

Fr (Ul, Ur, �Z) = F(U ∗
l , U ∗

r ) +

(
0

gh2
r /2 − gh2

r∗/2

)
,




(A 14)

where U ∗
l = (hl∗, hl∗ul), U ∗

r = (hr∗, hr∗ur ), and

hl∗ = max(0, hl − max(0, �Z/g)), hr∗ = max(0, hr − max(0, −�Z/g)). (A 15)

Here, F is any entropy satisfying consistent numerical flux for the homogeneous
problem (i.e. with Z = const), that is able to deal with dry states. Our choice here is a
relaxation solver described in Bouchut (2004), but other choices give similar results.

Rotation as an apparent topography

The apparent topography method that we introduce here is general and can be
used to treat generic source terms. Consider for our purpose the shallow-water system
with topography and Coriolis force

ht + (hu)x = 0,

(hu)t + (hu2 + gh2/2)x + hZx − f hv = 0,

(hv)t + (huv)x + f hu = 0,


 (A 16)

where Z = Z(x), f = f (x). Now solutions at rest are given by u = 0, f v = (gh+Z)x .
The idea is to identify the two first equations in (A 16) as (A 7) with a new topography
Z + B , where Bx = −f v. Now, v depends also on time while B should be time
independent, so we take Bn

x = −f vn and solve (A 7) on the time interval (tn, tn+1)
with topography Z + Bn.

At the discrete level, this is done as follows. We define

�Bn
i+1/2 = −fi+1/2�x

vn
i + vn

i+1

2
, (A 17)

and update U = (h, hu, hv) via

Un+1
i − Un

i +
�t

�x

(
Fi+1/2− − Fi−1/2+

)
= 0, (A 18)

with

Fi+1/2− =
(
Fl

(
Ui, Ui+1, �Zi+1/2 + �Bn

i+1/2

)
, F hv

i+1/2−
)
,

Fi+1/2+ =
(
Fr

(
Ui, Ui+1, �Zi+1/2 + �Bn

i+1/2

)
, F hv

i+1/2+

)
,

}
(A 19)

where the numerical fluxes Fl , Fr are those associated to the problem without rotation
of the previous section. The transverse momentum fluxes have a natural discretization
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associated to the equivalent conservation law (h(v + Ω))t + (hu(v + Ω))x = 0, with
Ωx = f , which is strongly related to the potential vorticity conservation. This gives
the following natural formulae

(
F hv

i+1/2−, F hv
i+1/2+

)
=

{(
F h

i+1/2vi, F
h
i+1/2

(
vi − fi+1/2�x

))
if F h

i+1/2 � 0,(
F h

i+1/2

(
vi+1 + fi+1/2�x

)
, F h

i+1/2vi+1

)
if F h

i+1/2 � 0.
(A 20)

Then it is easy to see that our scheme is consistent with (A 16), and well balanced
since it preserves the discrete steady states satisfying ui = ui+1 = 0 and ghi+1 − ghi +
�Zi+1/2 = fi+1/2�x(vi +vi+1)/2. The scheme also conserves mass, it is able to compute
dry-bed states and satisfies a discrete entropy inequality. For dry-bed tests see Audusse
et al. (2004b).

A.3. Comparison of the methods

In order to compare the two methods, we made identical simulations within both
schemes, and present in figure 20 the PV-fields we obtained. We also show the results
of calculations with the operator splitting method (Method 3) used in the previous
works (see e.g. Kuo & Polvani 1997). Before comparing the three runs, we should
emphasize that there is no theoretical proof of the convergence (for resolution �x → 0)
of these schemes toward the exact PV-field since the error is proved to be bounded
for (h, hu, hv) only.

For low resolution, the three methods give significantly different results for a
relatively short-time computation, although they all converge to the same solution if
resolution is increased, see the convergence tests below. At time t/Tf = 5, the field
computed with Method 2 exactly overlaps with the refined grid reference solution
obtained with maximal resolution we used – see below. However, both Method 1
and Method 3 excessively dissipate PV in certain regions. In Method 3, it is the
PV maxima which are strongly dissipated (arrows A, figure 20) whereas Method 1
modifies the structure of the PV field at the wave-breaking locations (arrows B,
figure 20). It should be stressed that erosion of the PV extrema increases as time
evolves in Method 3; therefore, the operator splitting method is not well-suited for
long-time computations. Both Method 1 and Method 2 maintain well the adjusted
states and conserve PV; Method 2, in addition, preserves the structure of the PV field at
the wave-breaking location. Furthermore, the three methods were compared in a series
of runs with increasing resolution. The results are summarized in tables 2, 3 and 4.
In each table, �x is the spatial resolution. The numerical error is given by

‖(h, hu, hv)‖�x = �x
∑

i

(
c0

∣∣hi − h0
i

∣∣ +
∣∣hui − hu0

i

∣∣ +
∣∣hvi − hv0

i

∣∣), (A 21)

where (h0, hu0, hv0) corresponds to a reference run which was obtained with fine-grid
Method 2 at �x/Rd = 0.0025. (The reference solution may be as well obtained
with any of the methods, provided the grid is sufficiently fine, see the convergence
tests below.) Finally, ‖ · ‖q

�x is the error in the potential vorticity as obtained from
(h, hu, hv):

‖(h, hu, hv)‖q
�x = �x

∑
i

∣∣qi − q0
i

∣∣. (A 22)

The effective spatial order is calculated as n = (1/ log 2) log((‖ · ‖�x)/(‖ · ‖�x/2)).
Tables 2–4 show that all three methods converge to the reference solution. Method 2

converges with a maximum effective spatial numerical order of 1.57. This is a standard
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Figure 20. PV field at t/Tf = 5.0 as computed with three different methods. Method 1 (open
circles) and Method 2 (grey dots) are described in Appendices A.1 and A.2, respectively;
Method 3 (black dots) applies the Roe approximate Riemann solver with an operator splitting
treatment of the source terms used by Kuo & Polvani (1997). The plain line is the reference
run cited in Appendix A.3. The three methods are applied to the simulations of experiment
(a) with Ro = 1, Bu = 4 (i.e. a configuration with shock formation, cf. figure 3 on a �x =
0.02Rd grid. The arrows A and B indicate the regions where the three solutions differ
significantly at low resolution.

�x/Rd ‖ · ‖�x ‖ · ‖q
�x n

0.160 1.7736 2.4091 0.97
0.080 0.9076 2.0248 1.52
0.040 0.3171 0.5528 1.11
0.020 0.1467 0.2296 1.08
0.010 0.0695 0.1053 1.09
0.005 0.0326 0.0444 –

Table 2. Convergence table of Method 1 at t/Tf =5.0 for experiment a with Bu = 4 and
Ro = 1. Both errors are computed between x/Rd = −10 and x/Rd = 10. The numerical spatial
order is obtained as n= (1/ log 2) log((‖ · ‖�x)/(‖ · ‖�x/2)). The scale of ‖ · ‖�x (resp. ‖ · ‖q

�x) is

gH 2/f (resp.
√

g/H ).

�x/Rd ‖ · ‖�x ‖ · ‖q
�x n

0.160 0.3998 1.8043 1.51
0.080 0.1402 0.8898 1.21
0.040 0.0603 0.3779 1.16
0.020 0.0270 0.1522 1.22
0.010 0.0116 0.0636 1.57
0.005 0.0039 0.0219 –

Table 3. Same as table 2 but with Method 2.

value for second-order schemes in the presence of shocks. For more detailed accuracy
testing see Audusse et al. (2004b). A good convergence is also obtained in the PV
field. Method 3 converges moreslowly (order 1.04); this is due to its property of slow
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�x/Rd ‖ · ‖�x ‖ · ‖q
�x n

0.160 0.7749 2.0888 0.82
0.080 0.4389 1.3662 0.97
0.040 0.2241 0.7156 1.01
0.020 0.1116 0.3525 1.01
0.010 0.0555 0.1687 1.04
0.005 0.0271 0.0784 –

Table 4. Same as table 2 but with Method 3.

Experiment Description Parameters Domain Figure

a Rossby adjustment Roa , Bua Open 2, 3, 4, 5, 8, 20
b Double-jet adjustment Rob , Bub , αb Open 6, 7
c Wave-perturbation Roc

jet, Buc
jet, Roc

p , Frc
p Open 9, 13, 14, 15

of a jet
d Wave-perturbation Rod

jet, Bud
jet, αd , Rod

p , Frd
p Open 14, 15

of a double-jet
e Nonlinear wave stability ke , ae , Roe

p , Fre
p Periodic 16, 17

f Harmonic wave adjustment Rof , Buf Periodic 18, 19

Table 5. Numerical experiments.

erosion of the PV-extrema (figure 20, arrow A). Method 1 also converges slower owing
to the regions indicated by arrows B in figure 20. This property is more pronounced
for strongly unbalanced (h, hu, hv) (i.e. in the early stages of adjustment) and may be
cured by using different treatment of the source-terms depending on the balance of
the solution. It should be noted that the rapid convergence toward the correct solution
observed with Method 2 is partially due to the second-order time-stepping scheme
used in that case whereas only a first-order scheme is implemented in Method 1 and
Method 3.

This comparison clearly reveals the advantages of Method 2, which we used.

Appendix B. Relevant parameters and initial conditions of numerical
experiments

In this section, we settle initial conditions and give relevant parameters for each of
our numerical experiments. The experiments are summarized in table 5.

Experiment a. Rossby adjustment

Initial state:

h(x, 0) = H,

u(x, 0) = 0,

v(x, 0) = V NL(x),


 (B 1)

Parameters:

Roa =
V

f L
, Bua =

gH

f 2L2
. (B 2)
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Experiment b. Double-jet adjustment

Initial state:

h(x, 0) = H,

u(x, 0) = 0,

v(x, 0) = V (NL(x − αb) − NL(x + αb)),


 (B 3)

Parameters:

Rob =
V

f L
, Bub =

gH

f 2L2
, αb. (B 4)

Experiment c. Wave-perturbation of an adjusted jet

Initial state:

h(x, 0) = hc(x),

u(x, 0) = upNLp
(x),

v(x, 0) = V NL(x),


 (B 5)

with

f v = g
dhc

dx
, hc(0) = H.

Parameters:

Roc
jet =

V

f L
, Buc

jet =
gH

f 2L2
, Roc

p =
up

f Lp

, F rc
p =

up√
gH

. (B 6)

Experiment d. Wave-perturbation of an adjusted double-jet

Initial state:

h(x, 0) = hd(x),

u(x, 0) = upNLp
(x),

v(x, 0) = V (NL(x − αd) − NL(x + αd)),


 (B 7)

with

f v = g
dhd

dx
, hd(αd) = H,

Parameters:

Rod
jet =

V

f L
, Bud

jet =
gH

f 2L2
, Rod

p =
up

f Lp

, F rd
p =

up√
gH

, αd. (B 8)

Experiment e. Perturbation of a nonlinear wave

Initial state:

h(x, 0) = hw(x)

(
1 +

up

c
NLp

(x)

)
,

u(x, 0) = uw(x),

v(x, 0) = vw(x),


 (B 9)

with (hw, uw, vw) being the L-periodic exact nonlinear wave solution.
Parameters:

Roe =
max|uw|

f L
, ke =

2π

L
, Roe

p =
up

f Lp

, F re
p =

up

c
(B 10)
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Experiment f. Finite-amplitude harmonic wave adjustment

Initial state:

h(x, 0) = H (1 + a sin(kf x))

u(x, 0) = a
ω̂

kf
sin(kf x)

v(x, 0) = −a
f

kf
cos(kf x)




with ω̂ =

√
c2 kf 2 + f 2. (B 11)

Parameters:

Rof =
a c

f L
, kf . (B 12)

REFERENCES

Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R. & Perthame, B. 2004a A fast and stable
well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci.
Comput. (to appear).

Audusse, E., Bristeau, M.-O. & Perthame, B. 2004b Second order kinetic scheme for saint-venant
equations with source terms on unstructured grids. Preprint INRIA.

Bouchut, F. 2004 Nonlinear stability of finite volume methods for hyperbolic systems of
conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics. Birkhauser
(to appear).

Houghton, D. D. 1969 Effect of rotation on the formation of hydraulic jumps. J. Geophys. Res.
74, 1351–1360.

Kuo, A. C. & Polvani, L. M. 1997 Time-dependent fully nonlinear geostrophic adjustment. J. Phys.
Oceanogr. 27, 1614–1634.

Kuo, A. C. & Polvani, L. M. 1999 Wave–vortex interaction in rotating shallow water. Part 1. One
space dimension. J. Fluid Mech. 394, 1–27.

LeVeque, R. 1992 Numerical Methods for Conservation Laws . Birkhauser.

LeVeque, R. 1997 Wave-propagation algorithms for multidimensional hyperbolic systems. J. Comput.
Phys. 131, 327–353.

LeVeque, R. 1998 Balancing source terms and flux gradients in high-resolution Godunov methods:
the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365.

Lighthill, J. 1978 Waves in Fluids . Cambridge University Press.

Nof, D. 1984 Nonlinear internal waves in a rotating ocean. J. Phys. Oceanogr. 14, 1683–1702.

Ostrovsky, L. 1978 Nonlinear internal waves in a rotating ocean. Oceanology 18, 119–124.

Peregrine, D. 1998 Surf zone currents. Theoret. Comput. Fluid Dyn. 10, 295–309.

Pratt, L. 1983 On inertial flow over topography. Part 1. Semigeostropic adjustment to an obstacle.
J. Fluid Mech. 131, 195–218.

Pratt, L. 1984 On inertial flow over topography. Part 2. Rotating channel flow near the critical
speed. J. Fluid Mech. 145, 95–110.

Rossby, C. 1938 On the mutual adjustment of pressure and velocity distributions in certain simple
current systems II. J. Mar. Res. 1, 239–263.

Rozhdestvenskii, B. & Yanenko, N. 1983 Systems of Quasi-Linear Equations and their Applications
to Gas Dynamics . AMS.

Schar, C. & Smith, R. 1993 Shallow-water flow past an isolated topography. part 1: Vorticity
production and wake formation. J. Atmos. Sci. 50, 1373–1400.

Shrira, V. 1981 Propagation of nonlinear waves in a layer of rotating fluid. Izv. Atmos. Ocean.
Phys. 17, 55–59.

Shrira, V. 1986 On long strongly nonlinear waves in a rotating ocean. Izv. Atmos. Ocean. Phys. 22,
298–305.

Whitham, G. B. 1974 Linear and Nonlinear Waves . Wiley.

Zeitlin, V., Medvedev, S. & Plougonven, R. 2003 Frontal geostrophic adjustment, slow manifold
and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 1. Theory.
J. Fluid Mech. 481, 269–290.


